State-Space Inference and Learning with Gaussian Processes

نویسندگان

  • Ryan D. Turner
  • Marc Peter Deisenroth
  • Carl E. Rasmussen
چکیده

Inference and learning (system identification) in GP state-space models •EM for learning parameters of GP dynamics and measurement models •Referred to as Gaussian process inference and learning (GPIL)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Gaussian Process State-Space Models

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...

متن کامل

Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model ...

متن کامل

Gaussian Process Techniques for Wireless Communications

Bayesian filtering is a general framework for recursively estimating the state of a dynamical system. Classical solutions such that Kalman filter and Particle filter are introduced in this report. Gaussian processes have been introduced as a non-parametric technique for system estimation from supervision learning. For the thesis project, we intend to propose a new, general methodology for infer...

متن کامل

Probabilistic Recurrent State-Space Models

State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex timeseries data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalabl...

متن کامل

Random Feature Expansions for Deep Gaussian Processes

The composition of multiple Gaussian Processes as a Deep Gaussian Process (DGP) enables a deep probabilistic nonparametric approach to flexibly tackle complex machine learning problems with sound quantification of uncertainty. Existing inference approaches for DGP models have limited scalability and are notoriously cumbersome to construct. In this work we introduce a novel formulation of DGPs b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010